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A framework for quantum probability is developed and combinations of systems 
are studied within this framework. In particular, we consider the horizontal sum, 
the direct sum, and the Cartesian product of quantum probability systems. The 
relations between these combinations and the concepts of interference and 
independence of measurements are derived. We also consider the amplitude 
superselection structure of these combinations. 

1. INTRODUCTION 

The quantum probability framework that we shall use is based on ideas 
of Feynman (1948; Feynman and Hibbs, 1965; Schulman, 1981). According 
to Feynman, at any given time, a physical system S is in precisely one state 
(or configuration or alternative) w and each state has an amplitude for 
occurring. If  X is a measurement on S, then executing X results in a unique 
outcome depending on the state o~ of S. The amplitude of an outcome x 
of a measurement X is the "sum" of the amplitudes of all states that result 
in x upon executing X. The probability of  an outcome of X is the modulus 
squared of  its amplitude. We have developed these ideas in previous works 
(Gudder, 1988a, b, 1989, and to appear) and refer the reader to these for a 
fuller discussion. 

The three main ingredients of a quantum probability theory for S are 
the set of  states [I, a set of  measurements M which we call a catalog, and 
the set of amplitude densities @ (M) for M. This paper is primarily concerned 
with various ways of combining catalogs and amplitude densities. In par- 
ticular, if M1 and M2 are catalogs, we define their horizontal sum M1 + M2, 
direct sum J ~ O  J 2 ,  and Cartesian product MIM2. Corresponding to these 
combinations, there are natural ways of combining their amplitude densities. 
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For f i  e ~(M1) a nd f i  ~ ~(,5~2) we define the combinat ionsfi  off on ~/1 + ~g~, 
f l  •f2 on M1 �9 ~r and fail on ~r162 Moreover, we introduce the concepts 
of interference and independence of measurements relative to an amplitude 
density and study the manifestations of  these concepts for the various 
combinations. We also consider superpositions of amplitude densities. These 
result in (unnormalized) amplitudes, and we call maximal superposition 
sets of  amplitudes, sectors. The sector structures for combined systems are 
developed. In order to give simple motivations of the theory without 
measure-theoretic technicalities, finite quantum probability models are 
developed in Section 2. Section 3 studies horizontal sums within the finite 
model. In Section 4, we present the full mathematical theory as motivated 
by Section 2. Finally, Sections 5 and 6 develop the theory of  direct sums 
and Cartesian products. 

2. FINITE MODELS 

Since a full formulation of  quantum probability theory requires certain 
measure-theoretic technicalities, it is instructive to first consider a simple 
finite model. Let l-I = {w~, . . . ,  wn} be the set of possible states for a physical 
system S. Let f : l - l -~C be an amplitude function, where f(wj) gives the 
amplitude that the state wj occurs, j = 1 , . . . ,  n. If  X is a measurement for 
S, we denote by X(oJ )=  x the outcome resulting when X is executed and 
S is in the state w c ~.  Thus, we can consider X as a function X :~  --> R(X), 
where the range R(X) is the set of  X-outcomes. The amplitude of the 
outcome x upon executing X is defined by 

fx(x) = 2 {f(w):  X(w)=x}= Y. f(w) (2.1) 
~ e X - I ( x )  

We call fx:R(X)->C the ( X , f  )-wave function. Notice that (2.1) is the 
prescription for obtaining the amplitude of  x given in the introduction. The 
probability of x upon executing X is defined as P• Ifx(x)l:. Finally, 
if Bc  R(X) is a set of  X-outcomes (an X-event), the probability of  B is 
given by 

Px, I(B)= }~ Px,f(x)= Y, I f x ( x ) l  2 (2.2) 
x c B  x c B  

In order for Px, f t o  be a probability distribution, we must assume that f 
satisfies the normalization condition 

2 Ifx(x)l:= 1 (2.3) 
x e R ( X )  

If  (2.3) holds, we call f an amplitude density for X. We then call Px, s the 
f-distribution of X. 
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Although this formalism describes quantum mechanical  situations, the 
reader should notice that we have not begun with the Hilbert space of states 
and have not defined an observable as a self-adjoint operator. These tradi- 
tional quantum mechanical  constructs are derived from our more primitive 
axioms. In fact, due to the normalization condition (2.3), the wave function 
fx  is a unit vector in the Hilbert space Hx =- 12(R(X)). Traditional quantum 
mechanics begins with the wave function f x :R(X)-~C and misses the 
underlying "reali ty" given by the space O. Moreover,  traditional quantum 
mechanics describes the measurement  X by the operator  )~ on Hx given 
by (Xf)(x) = xf(x). This replaces the function X by the more complicated 
and less precise operator  X. 

So far we have only discussed a single measurement  and events corre- 
sponding to that measurement.  In quantum mechanics it is important  to 
consider several measurements  simultaneously and their corresponding 
events. For this reason, we introduce a nonempty  collection of measurements 
s~. We denote by @(sr the set of  functions that are simultaneous amplitude 
densities for all the measurements  in sr Let X ~ sr let A _ O, and suppose 
we want to obtain information about A by employing the measurement  X. 
In general, A may have no relationship to X. In fact, A is frequently of  the 
form A = Y-I(B), where Y~  sr is another measurement.  In this case, we 
seek information about  Y using a different measurement  X. We define the 
ampli tude that A occurs and X results in x by 

fx (A)(x) = Z {f(to): to 6 A c~ X- l (x )}  (2.4) 

In particular, notice that for every B c_ R(X) we have 

fx  [ X - I ( B ) ]  = Xafx (2.5) 

where XB is the characteristic function for B, so (2.4) is a reasonable 
definition. Moreover,  when A = ~2 we have f• =fx. It is then natural to 
define the (X, f)-pseudoprobability of A as 

Px, AA)= Z IJ;,(A)(x)l z (2.6) 
x e R ( X )  

As a special case, applying (2.5), this gives for B c_ R(X) 

Px,f(B)~P• Z XB(x)lfx(x)f= E [ fx (x ) l  2 
x ~ R ( X )  x~B  

which is consistent with (2.2). 
Although Px.f(A) is always nonnegative, we call it a pseudoprobabil i ty,  

since it may be larger than 1 and is not generally additive in A. For these 
reasons, Px, y(A) may not be interpretable as a probability. However,  in 
many  situations it does have the properties of  a true probabili ty distribution. 
For example,  we have seen this to be the case for A = X - I ( B ) ,  B C R(X). 
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What is the operational meaning of  Px,:(A) as given in (2.6)? That is, 
how does one calculate Px, f(A) using laboratory data? First, A must be a 
physical event; that is, one which is preparable in the laboratory. Prepare 
the event A a large number N times, and each time A is prepared, execute 
the measurement X. Let R ( X ) = { X l , . . . ,  xm} and suppose xj results nj 
times, j = 1, . . . ,  m. Thus, ~ nj = N. If A is preparable, then its complement 
A' should also be be preparable. Follow the same procedure for A' and 
suppose xj now results n~ times, j = 1 , . . . ,  m. Then the number nJ(nj + n~) 
gives the probability Px,:(Alxj) that A occurs given that x: occurs when X 
is executed. Now the probability Px,f(x~) is easily calculated. Simply perform 
X a large number N times and divide the number of  occurrences rj of  xj 
by N. These numbers are then used to calculate 

1 m r:nj 
Px'f( A ) = j=12"~ Px,:( xj ) ex,:( alxj  ) = 1~ =~;~1 

nj + n~ 
Now it is an axiom of quantum probability that this expression and the 
one in (2.6) coincide. 

Now let B c R(X) ,  A ~ f~ and Px, f(A) # O, and define the conditional 
probability 

Px, f(BIA) - Px'f[X-I(B) n A] (2.7) 
Px, y(A) 

It is easy to show that 

f x [ X - ' ( B )  n A] = XBf• (A) (2.8) 

Applying (2.8), (2.7) becomes 

1 
Px,:(BIA) Px,:(A) x~BZ I fx (A)(x) l  2 (2.9) 

Notice that B ~ Px, y(B[A) is a true probability measure on the set of 
X-events. For X, Y~ ~ and f ~  ~ ( ~ ) ,  we say that X is f-independent of 
Y if 

]fx[Y-a(A)](x)Ia=px, f (B)Px,:[Y-I(A)] (2.10) 
xEB 

for every B c R(X) ,  A ~_ R(Y) .  Applying (2.9) and (2.10), we conclude that 

Px, f(B[ Y- ' (A))  = Px, f(B) 

for every B _ R(X) ,  A _ R(Y)  with Px, f[ Y-I(A)] • 0. We say that X does 
not interfere with Y relative to f if  

Px, f[ Y-I(A)]  = Py, f(A) (2.11) 

for every A _ R (Y). 
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Our definition of independence is analogous to the classical definition 
and does not need further justification. However, our definition of  noninter- 
ference is fairly recent, so we shall discuss it in some detail. [A different 
justification is given in Gudder  (1989 and 1990).] We first give a geometric 
interpretation. Suppose for simplicity that 

fl  ={~%.:i,j = 1 , . . . ,  n} 

Let X, Y be measurements defined by X(oJ0)=xi  and Y(o~v)=yj, i, j =  
1 , . . . ,  n. Suppose X does not interfere with Y relative to f and let A = 
{Yl, Y2} c - R(Y) .  Since 

Y-I(A) = { O ) i l  , w i 2 :  i =  1 , . . . ,  n} 

it follows from (2.11) that 

n 2 n 2 

[f(to~l)+f(o~2)l 2= Y. f(o~n) + Y~ f(o~2) (2.12) 
. =  . =  i = l  1 1 z 1 

Visualizing ~ as a matrix, on the left side of (2.12) we first sum along 
a row, take the modulus squared, and then sum these, while on the right 
side, we first sum along a column, take the modulus squared, and then 
sum these. Hence, the orders of summation and of taking the modulus 
squared are different. A similar equality must hold for every A _  R(Y) .  We 
thus see that two measurements do not interfere only under very special 
circumstances. 

Section 4 generalizes the present one by allowing measures on the sets 
X-1(x) ,  x ~ R ( X ) .  For the present finite case, this entails the introduction 
of nonnegative weights w, corresponding to the elements ~o~ e x - l ( x ) .  The 
wave function at x then becomes 

f x ( x )  = ~, {wi f  (to,): toi E X-I (x)}  

We now analyze the concept of noninterference in traditional quantum 
mechanics. For simplicity, suppose our system is described by a finite- 
dimensional Hilbert space H. Let f~ be the unit sphere S(H)  of  H. This is 
the usual quantum mechanical state space. Of course, in this case ~2 is no 
longer finite. However, we shall overcome this difficulty by placing weights 
so that only a finite number of states have nonzero weight. For ~s e S(H)  
define the amplitude f=f~,:12-+ C by f ( O ) =  (0, cb). Let { 4 h , . . . ,  4>,} be an 
orthonormal basis in S(H)  and let a ~ , . . . ,  a , ,  a~ be distinct real numbers. 
Define X : f~ -+ ~ by 

hi if qS=qSi, i = l , . . . , n  
X ( & ) =  a~ otherwise 
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Place the standard counting measure on X- l (h i ) ,  i = 1 , . . . ,  n, and place 
the zero measure on X-1(Ao~). Then X is a measurement  corresponding to 
an observable that has the value h~ in the state ~bi, i = 1 , . . . ,  n. Notice that 
f is an ampli tude density for X, since fx(hi)=(~b, ~i), i - -1 , . . . ,n ,  and 
fx  (boo) = O, so 

]fx(A)]2= ~ [(~b ' tbl)]2= ]]~p[[2= 1 
AcR(X) j = l  

Similarly, let {~b~,...,  ~b'} be an or thonormal  basis in S(H) and let 
h ~ , . . . ,  h'~, h'~ be distinct real numbers. Define X ' :  lq ~ R in an analogous 
way. Suppose X does not interfere with X ' .  Then 

Px, f[(X')-'(A)] = Px, f(A) 

for every A ~_ R(X'). Letting A = {h'~}, we have 

j = l  

Hence,  if OZ4~l, then tbj -= ~bl for some j e { 1 , . . . ,  n}. Therefore, if ~2i4~I 
for every i =  1 , . . . ,  n, then {~bt , . . . ,  ~b,} = {~b~,. . . ,  ~b'}. Since the ~b~ corre- 
spond to eigenvectors, this condition characterizes commuting self-adjoint 
matrices, which is the usual criterion for compatible observables. In general, 
every eigenvector for X '  which is not orthogonal to ~ coincides with an 
eigenvector for X. 

We close this section with a consideration of the expectation of a 
function relative to a measurement.  Suppose we want to measure a function 
g : l~ ~ g~ using a measurement  X. We first define the amplitude of g when 
X results in x by 

fx(g)(x) =•  {g(to)f(to):  X(w) = x} (2.13) 

Notice that (2.13) is the sum of  the values of  g times the amplitudes of  
these values along X-~(x), so it is similar to a probabili ty average. In this 
sense, we can think of (2.13) as an ampli tude average. Also, (2.13) is a 
generalization of  (2.4), since if g = XA, then fx  (g)(x) =fx(A)(x), We define 
the (X, f)-pseudoexpectation of  g by 

Ex, f(g) = Y, fx(g)(x)fx(x) (2.14) 
xER(X)  

where fx(x)  is the complex conjugate of fx(x). Notice that (2.14) is a 
generalization of Px,f(B), since if g=Xx-'(~), then Ex.f(g)= Px.f(B). 
Equation (2.13) can be used to show the correspondence between measure- 
ments and functions on f~ with linear operators on Hx. In fact, the map 
fx~-->fx(g) takes elements of  Hx to elements of  Hx. Moreover,  if we extend 
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(2.13) to include unnormalized amplitudes, then this map becomes linear. 
Therefore, corresponding to g we obtain a linear operator ~ on Hx satisfying 

Then (2.14) becomes 

Ex.f(g) = 

g, f x  =fx (g) (2.15) 

E (gfx)(x)fx(x)=(g,  f x , f x )  (2.16) 
x ~ R ( X )  

which is the usual quantum mechanical formula. In particular, suppose 
R ( X )  c_ ~. Then (2.13) gives 

f x ( X ) ( x )  = x E {f(w): X(w) = x} = xfx(x)  

Hence, X is represented by the operator .~, where f f f x ( x )=x fx (x ) .  This 
gives the usual representation Hilbert space Hx in which X is diagonal. 

3. HORIZONTAL SUMS 

This section illustrates some of the concepts of Section 2 and also 
begins our study of combined systems. To conform with probabilistic 
terminology, we call the set fl a sample space. Let ~1 and [12 be finite sample 
spaces and let ~ = f ~ l  xC~2 be the Cartesian product of fll  and ~2, 

~'~ : {((.Ol , 0)2): (.01 E ~'~1, 0)2 E ~'~2} 

If X1, X2 are measurements on fI1, ~2, respectively, we define the measure- 
ments 3~, X: on ft by )(~(os~, ~o2) = X~(Ol), X2(w~, w2) = X2(o2). If ~r and 
M2 are catalogs on ~x, f~2, respectively, we define the horizontal sum of 
M~ and M2 as 

~l ~- ~ 2  = { 2 1 ,  X 2 :  X l  E ~.~1, X 2 c .~2} 

The extension of this definition to any number of summands is straight- 
forward. The next example illustrates the importance of this construction. 

Example 1 (Spin Chain). Let f~l = {u, d} be the sample space describing 
the spin in the z direction of a spin-l/2 particle and let X be the spin 
measurement given by X(u)  = 1/2, X(d)  = -1 /2 .  Suppose a spin-l /2 par- 
ticle initially has spin up and we then perform spin measurements in the z 
direction at one time unit and at two time units. Letting f~o = {u}, this can 
be described by the sample space 

= ~o x ~ x ~ ,  = {(~o~, o~2, ~o2): ~Oo = u, ~o~, o~2 ~ ~1} 

We then define the spin measurements Xo, X1, X~_ on f~ by ~(Oao, oa~, oa2) = 
X(%),  j = O ,  1,2. For o a ~ ,  let n(~o) be the number of successive spin 
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changes; for example, n((u,  u, d))  = 1, n((u,  d, u)) =2.  Define f : l ~ + C  by 
f ( to )  = i"( ' ) /2,  i =  vr '~.  Then 

f2o 2o~n 2 ( 1 + 2 i + i 2 ) = i  

f~, ~ =7(1+i), f~, - =5 ( -1+0  

A A A 

It follows that f is an amplitude density for Xo, X1, and X2. We have 

f;,7, 21 = f ( u ,  u, u) 2 

,(,)](1) , 
f~, 2 7 -7 =/(u, d, u)=-7 

i 

,,,~, P>z~,(-'-~ 1(-1~ --,.~., <,, <o=-' 
k \ 2 / J \  2/  2 

Hence, 

e~,e 2 ; '  = 1 #  o = e ,~j  
2 

P21,f 21 -- = 1 = P22,Z 

so a spin measurement at time 1 interferes with a spin measurement at 
time 2. Moreover, 

f2~ 1 2' 

f~2 ~ -  2'  

Hence, 

* 1 1 1 i 

1 (1) 
(1) 

P22,I 2 ~  1 - 1 - 2  

so a spin measurement at time 2 does not interfere with a spin measurement 
at time 1. This shows that noninterference is not a symmetric relation. 
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One can make a similar analysis for longer spin- l /2  chains. If  measure- 
ments are performed at times 0, 1, 2 , . . . ,  m, we would construct the sample 
space f~oxf~lX. . ,  x l ql ,  where 1-11 is repeated m times. In this case, we 
would define f (0))  = i"('~ ''/2. It can then be shown t h a t f  is an amplitude 
density for the measurements ~ , j  = 0 , . . . ,  m. Notice that in all these cases 

Other repeated measurements such as higher spin measurements can be 
described in this way. Of  course, in such cases the definition o f f  would be 
more complicated. [] 

Let Ft~, [12 be finite sample spaces, J~ ,  ~2 catalogs on ~1, [12, 
respectively, and fl e @(J1),  f2 e ~(~2) .  We now give a method for combin- 
ingf~ and f2 to form an amplitude density in N(aCl+sq2). Suppose f~, f2 
satisfy 

~a f1(091)1 = 2~a f2(0)2) = c r  (3.2) 
601 1 6O 2 

Although (3.2) is a fairly strong restriction, it does hold in various situations. 
For example, if [1, =f~2 and f~ =f2,  then (3.2) certainly holds. Also, by 
(3.1), amplitude densities for the spin chains in Example 1 satisfy (3.2) with 
c = 1. We define fl ~ : ~-~1 X ~'~2 -+ C by 

f,(0),)f2(092) 
(ft of2)(09,, 092) = 

c 

Lemma 3.1. If f l e D ( M l ) ,  f2e@(M2) satisfy (3.2), then f lof2e 
~ ( a ~ +  ~%). 

Proof. Let X1 e M1, X2 e M2. We must show that f~ of  2 is an amplitude 
density for Jql and P~2; that is, the normalization condition (2.3) holds. 
From (3.2), letting 

Y~ f1(0),) = c,, Y~ f2(092) = C2 
~O1~ 1 CO2E~ 2 

we have Icd = Ic21 = c. For Xl c R()(~) we have 

( f l  ~  = L {f, ~ 092): 21(O-I1,  0 ) 2 ) =  X1} 

1 
----"- E { f l ( 0 ) l ) f 2 ( 0 9 2 ) :  X1(091)  = X l ,  0)2 E ~-~2} 

c 

1 
= -  Y~ f2(092) Y~ {f,(0),): Xl(0),) = x,} 

C Oj2~ [~ 2 

=c2 f~x,(x~) (3.3) 
c 



766 Gudder 

Hence, 

2 Z If, 1 
xlc R(.~l) xlER(XI) 

Similarly, if x2 ~ R(X2), then 

c l  
(f1~ = - -  f2x2(X2) 

c 

and the normalization condition again holds. II 
A A 

We now study the independence of XI and X2 relative to f=flof2. 
Letting A _  R(X2) and xl ~ R(X0 ,  we have 

A 1 A ^ 
f2,[X; ( A ) ] ( x , )  = E  { f ( t o , ,  o)2): Xl ( ( -Ol ,  0.)2) = X l ,  X2((..Ol , 0.)2) c A )  

1 
= - Z  {fl(to,)/2(to2): Xi( to, )  = Xl, X2(w2) ~ A} 

c 

1 
=-flx,(X,) Y, {f2(w2): X2(w2) ~ A) (3.4) 

c 

Hence, 

P2,.s[22'(A)] = ~. I f2 , [2; l (A) ] (x , ) l  2 
x~ E R(-,~'l) 

1 
= IX {f2(oJ2): 2(2(o)2) ~ A}I 2 (3.5) 

Now let B _  R(X1). Applying (3.3)-(3.5), we have 

.. 1 Z If,• {f2(to2): X2(to2) ~A}[  2 E [ f~, [XT'(A)](Xl) ]2=~<,~. 
xtcB 

= P2,,I(B)P2,,i[f(2'(A)] 

We conclude from (2.10) that -~'1 and -'Y2 are independent relative to f In 
this sense, any X1 ~ J~ is independent of any X2 e ~2 relative to f This is 
not surprising, since f has a product form. 

We now consider interference. If follows from (3.5) that 

P~bf[X]'(A)] = P 9 1 , f [ X 2 1 ( A ) ]  

for any X~, I/1 z ar and X2 ~ ar Moreover, it is easily shown that 

P~2,f(A) = • If~x=(x~)l ~ (3.6) 
x2~A 

Now (3.5) and (3.6) certianly look different. In fact, we shall see in the 
next example that there can exist an f2 ~ @(~2) for which they are different. 
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Hence, for such an f=flofz,  every Xl interferes with every X2. This is 
related to the EPR problem. The measurements )(1 and X2 are separated 
in the sense that they cannot communicate, since they act on different parts 
of the system. In fact, they are statistically independent. However, the 
amplitude density f=flof2 produces nonlocal communication resulting in 
interference. This also shows that there are independent measurements that 
interfere. 

Example 2. Let ~) = {wl, o)2, o)3} and let )(2 be a measurement given 
by Xz(%)=Aj,j=I,2,3, where the Aj are distinct. Define f 2 : f ~ C  by 
f2(o)~) = 1/3 + i/.,/~, f2(o)2) = 1/3 - i/~/3, f2(o)3) = 1/3. Then 

~o~of2(o) ) =- C = 1 

and f• =f : (%) ,  j = 1, 2, 3. Hence, 

2 Ifx2(A)l == 1 
XeR(X2) 

so the normalization condition holds. Letting A = {a~, A2} _ R(X2), we have 

8 
IE{f2(o)): X2(w)eAII2=~ #-~ = E I/2x=(X2)l 2 

x 2 e A  

We conclude that (3.5) and (3.6) do not agree, in general. [] 

Let ~ = ~ + ace. We now characterize those f ~  ~ (M)  that have the 
form f=f~ of 2, fl ~ ~(sgl),  f2 ~ N(~2). We say that f ~  @(sd) is factorizable 
if the following conditions hold: 

(a) E {f(o)l, o)2): o)I  E a l ,  o)2 E ~'~2} = d # 0. 
(b) If  f'(o)l)= Y.o,2~a:f(o),, o92), then f'(o)l)= 0 implies f(o)l,  o92)= 0 

for every o92 E ~2. 
(c) f(o)l, o)2)/f'(o)l) depends only on o)2 whenever f ' (o) l )#  0. 

Theorem 3.2. Let f ~  ~(~d). Then there exist f~ e ~ ( d l ) ,  f2e @(M2) 
such that f=f~~ if and only i f f  is factorizable. 

Proof. Supposef=f~  ~ Then, defining c~, c2 as in the proof of Lemma 
3.1, we have 

2{f(o)I,o)2):o)IE~-'I'I,o)2ED"2} = !  2 f,(o),) Y~ f2(o)2) 
C ~Ol ~ 1  r E ~'t 2 

Cl g2 
- # 0  

C 
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so (a) holds. Since f'(w,)=c2fi(wO/c, if f ' (~o0=0 ,  then fl(~O0=0, so 
f(w,, o)2)= 0 for every oJ2 e 1~2. Hence, (b) holds. If  f ' ( w 0  ~ 0, then 

f ( to , ,  eo2) 1 
- f2(w2) 

f'(091) C2 

is a function of only w2, so (c) holds. Conversely, suppose f c  ~(~r is 
factorizable. We first show that f ' c  @(~r For X, ~ ~r and Xl ~ R(XO we 
have 

f ~ l ( X l )  = ~,  {f'(oJ,): X l ( O ) l )  = X l }  

= E E f(wl, W2) 
o ~ l e X l t ( X l )  092 e ~'~ 2 

=E {f(w,, o)2): X,(w, ,  0.)2) = Xl} =f&(x,) (3.7) 

Hence, 

E If' l(x,)l := E ]f&(Xl)l : =  1 
x I ~ R ( X  1 ) Xl c R (-~71) 

so f ' e  @(sO,). Since f '  # 0, there exists an Wl such that f'(wl) # 0. Define 

IdlY(o,,, ,02) 
f" (o , 2 )  - 

f ' ( o , 0  

for every w, e f~2. By (c) we have 

1 
~-~ f ' (oJ , ) f f ' (w2)=f(w, ,  o)2) 

for every oJ16~1, oJ2~ 1)2. Applying (a) and (b) gives 

f " ( w 2 ) = ~  • f(w,,w2) 

As in (3.7), if X26 ~/2 and x26R(X2), we have 

so f " e  @(ar Since 

~01G ~. I 

we have f=f'of". [] 

f~2(x2) = ~f22(x2) 
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4. MATHEMATICAL FORMULATION 

We now summarize the full mathematical theory motivated by the 
considerations in Section 2. This theory has already been developed in 
Gudder  (1988a, b, 1989, and 1990) and we refer the reader to these references 
for more details. 

Let ~ be a nonempty set which we call a sample space and whose 
elements we call sample points. A map X : ~ - >  R(X) is a measurement if 
the following conditions hold. 

(M1) R(X) is the base space of a measure space (R(X), E• I~x). 
(M2) For every x ~ R(X),  X-l(x)  is the base space of  a measure space 

( x - ' ( x ) ,  E~,, ~ , ) .  
We call the elements of R(X),  X-outcomes, the sets in Ex,  X-events, 

and X-l (x)  the fiber (or sample) over x. Notice that ~ ( X ) =  
{X-1(B): B c Ex} is a o--algebra of subsets of  f~. We call the sets in ~ (X) ,  
X-sample events. 

A function f :  f~ -~ C is an amplitude density for the measurement X if 
the following conditions hold: 

(A1) fJX-'(x) c Ll(X-a(x),  ~,xx, tzxx) for  all x c R(X).  
(A2) fx(x)==- j f dtz~x ~ L2(R(X), Ex, IZx)=-- Hx. 
(A3) [[fxil2=I Ifxl 2 d~• = 1. 

We call Hx  the Hilbert space for X and fx  the ( X, f )-wave function. Of 
course, (A2) and (A3) correspond to (2.1) and (2.3), respectively, in the 
finite case. 

A subset A c__ f~ is an (X,f)-sample event if the following conditions 
hold: 

(S1) Ac~X-~(x)~E~x for every x e R ( X ) .  
($2) fx  (a)(x) =- IA~X-I(x)f dIJx ~ Hx. 

Denoting the set of (X , f ) - s ample  events by ~ ( X , f ) ,  it is clear that ~ (X )  c_ 
~(X, f ) .  If  Ac  ~(X, f ) ,  the (X,f)-pseudoprobability of A is 

Px, f(A) = f Ifx(A)[ 2 dl.ex = [Ifx(A)ll  2 (4.1) 

Notice that ($2) and (4.1) correspond to (2.4) and (2.6), respectively. For 
B ~ Ex,  as in the finite case, it is easy to show that 

Px, f(B) =- Px, f[X-~(B)] = fB jfxl2 dlzx 

If Ac $(X, f ) ,  BeEx ,  it can be shown that X-a(B)c~Ae $ ( X , f )  
(Gudder~ 1988a and 1990). If Px,f(A)#O, we define the conditional 
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probability Px, y(BIA) as in (2.7) and it follows as in (2.9) that 

px, s( Blm ) 1 f B Px, f (A) [fx(m)[ 2 dtzx 

We say that X is f-independent of a measurement Y if g(Y)  c_ g ( X , f )  and 

f lfx[ Y-I(A)][2 d~x = Px, f(B)Px, f[ Y-I(A)] 

for every B e E x ,  A ~ , y .  As before, this reduces to 

Px,s(BI Y-I(A))  = Px, y(B) 

for every B e Y.x, A ~ s  with Px, f[ Y-I(A)] # 0. Also, X does not interfere 
with Yrelative t o f  if g(Y)__ g ( X , f )  and for every AE~y w e  have 

Px, f[ Y-I(A)] = Py, f(A) 

We denote by L2(X,f)  the functions g : 1 2 ~  satisfying the following 
conditions: 

(X1) gflX-'(x) e L'(X-l(x) ,s  I~Xx) for all x e R(X) .  
(X2) f x  (g)(x) =- I g f d ~ x  c Hx. 

We call fx(g)  the (X,f)-amplitude density of g and notice that (X2) 
corresponds to (2.13). Corresponding to (2.14) we define the (X , f ) -  
pseudoexpectation of g ~ L2(X,f)  by 

Ex,f(g) = I f x (g ) f x  dtxx = <fx(g),fx) 

Until now we have only considered a single amplitude density f. 
However, it is frequently important to consider several amplitudes simul- 

A 

taneously; in particular, linear combinations of amplitudes. Denote by ~r 
the set of all measurements on ~2. A nonempty subset M ___ M(f~) is called 
a catalog. A f u n c t i o n f : f ~ C  is an amplitude for a catalog M i f f  satisfies 
(A1), (A2) for every X ~ M and the following condition: 

(AY) IFfxrl = IIfYII for every X, YeM.  

We denote the set of amplitudes for M by g ( M )  and call ~ (M)  the amplitude 
space for d .  I f f c  Yg(M), we write [If I[ = Ilfxll, where X e M  is arbitrary. 
Of course, if [Ifll = 1, then f is an amplitude density. We denote the set 
of amplitude densities for M by N(M). Notice that if f e  ~g(M), a ~ C, 
then afe  ~g(M) and Ilafll =lal  Ilfll. Also, i f f e  ~ (M)  with IIfll #0, then 
f /Hfll e ~( sr 

For f, g e 2t'(M) we write f s  g if for every X, Y e M we have 

f fxgxd~x=f fvgvd~,v (4.2) 
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If  (4.2) holds, we denote this expression by (f, g). Notice that s is a reflexive, 
symmetric relation and if f sg ,  then afsg for all a ~C. We call s the 
superposition relation. The following result is proved in Gudder  (1988a and 
1990). 

Theorem 4.1. F o r f  g 6  Y((~r f s g  if and only if af+bg~ Y((~r for 
every a, b ~ C. 

For B _ Y((~r we write 

B s = { f ~  Y((sC):fsg for all g c  B} 

We call B _ Y((~/) an s-set if B _~ B s. Thus, B is an s-set if and only i f f s  g 
for all f g c B. It is clear that singleton sets are s-sets and hence every 
f ~  Y((~/) is in an s-set. Moreover, by Zorn's lemma, every s-set is contained 
in a maximal s-set. We denote the collection of maximal s-sets by ~ / ( ~ ) .  
Elements of  ~ / ( ~ )  are maximal sets of amplitudes for which superpositions 
are allowed. They correspond to superselection sectors for a physical system. 
It follows from Theorem 4.1 that if M c ~ ( ~ l / ) ,  then M is closed under 
addition and scalar multiplication, so M is a linear space. We call f c X ( d )  
a null amplitude if I[f[[ = 0. It is clear that the set of null amplitudes forms 
a linear subspace of every M ~ ~ ( ~ / )  If we identify amplitudes that differ 
by a null amplitude, it is straightforward to show that ( . , . )  is an inner 
product  on M. We then call this inner product  space a sector. The collection 
of  all sectors is denoted 5e(J ) .  In general, ~ can have many sectors (Gudder,  
in preparation). 

To illustrate the power of this formulation of  quantum probability, we 
now show that it includes traditional nonrelativistic quantum mechanics as 
a special case. We have previously shown this for the catalog {Q, P}, where 
Q and P are the position and momentum measurements, respectively 
(Gudder,  1988a). We now give a much simpler argument using the catalog 
~ /=  {Q}. For simplicity we consider the one-dimensional case, but these 
results easily generalize to three dimensions. 

We take as our sample space the two-dimensional phase space 

f~ = {(q,p): q , p ~ }  

and define the position measurement Q : f ~ R  by Q(q,p)=q. We place 
Lebesgue measure on the fibers and range of Q so Q is indeed a measure- 
ment. We define the momentum function P : f ~  by P(q,p)=p. Since we 
are considering the catalog ~ /=  {Q}, P is treated as a function and not as 
a measurement. Then HQ becomes the usual position-representation Hilbert 
space. Since we want to describe dynamics, our amplitude densities will be 
functions of  time. 

Let ~b(q, t) be a complex-valued function which is twice differentiable 
with respect to q and differentiable with respect to t. Moreover, we assume 
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that qJ, OqJ/Oq, 020/0q2c L2(N, dq) and I1 11 = 1. For each teN,  define the 
function f :  fl ~ C by 

1 ^ 

f(q,p,  t) (2~rh)1/20(P, t) e iqp/~ 

where ~ is the Fourier transform of qJ. The Q-wave function becomes 

f o ( q , t ) = f f ( q , p , t ) d p =  l I ~  (2,rrh)l/~ ~b(p, t) e iqp/h dp = O(q, t) 

It follows that fo~ L2( R, dq) = H o and IIfQ [I = 1, so f ~  ~ ( ~ )  for each t c N. 
Moreover, PeL2(Q,f )  [see Conditions (X1), (X2)] since 

fo(P)(q, t) = I Pf(q' p' t) dp 

, I - (2~.h)1/2 p~(p, t) e idqp/~ dp 

-(2~r - ih q,(p, t) e 'qp/~ dp 

=-ihOt~(q, t) 
Oq 

Similarly, fo(P z) = - h Z o 2 @ / O q  2 and if ~ is sufficiently smooth, fo(P")= 
[-it~ O/Oq]"~O. More generally, if O is sufficiently smooth, then for any 
polynomial g we have fo(g(P))=g[-ih O/Oq]qJ. Moreover, if V : N ~ R  is 
any function such that V(q)O(q, t) ~ Ho, then 

fo(V(Q))(q, t)= f V(q)f(q,p, t) dp = V(q)O(q, t) 

We conclude that g(P) is represented by the operator g [ - ih  O/Oq] and 
V(Q) by the operator which multiplies by V(q). In this way we have derived 
the Bohr correspondence principle. 

We now derive the Schr6dinger equation from Hamilton's equation 
dp/dt =-OH/Oq. Suppose that the Hamiltonian has the form 

2 

H(q,p) = 2 ~ +  V(q) 

We now assume that Hamilton's equation holds in the amplitude average. 
Hence, 

'I -~ pf(q,p, t) dp = 0 H(q,p)f(q,p,  t) dp 
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It follows that 

773 

h 2 020 ~_ V(q)~b "] 
2m Oq 2 J 

Interchanging the order of differentiation on the left side of this equation 
and integrating with respect to q now gives Schr6dinger's equation 

h 2 
ih Otp= . 020 F- V(q)O 

at 2m oq 2 

5, DIRECT SUMS 

Let M1 -~ M(~I), M2 - M(~2) be catalogs on the sample spaces fI1, fI2. 
Form the sample space consisting of the disjoint union ~ = f~ ~ ~2 of f~ 
and f~2. For X~ ~ M1, X2c M2 define X = X I @ X 2  as the function 

x:  a +  R(X,)6 R(X~) 

given by 

J'X,(o)) if ,1, ~ f~, 
X(w) 

[X2(oJ) if o~ ~ f12 

We make X into a measurement by defining 

Xx = {A1 0 A2: A~ ~ s  A2 c s 

and 

tZx (A, W A2) = IZx,(A,) + ~x~(A2) 

Moreover, on the fiber X - l ( x )  we define 

f ~ l  if x~ R(X1) 

E~: = ~ [E~:2 if x ~ R(X2) 

and for A e s define 
x A x tx~(A)=f/Xxl(. ) if A ~ s  

[/x~2(A) if A ~ E )  2 

We define the direct sum of M1, M2 to be 

= ~ 1  (~ ~ 2  ~- {Xl (~  X2 : X l  c ~2~1, X 2 E ~2} 

Then M~@M2 is a catalog in M([h d a 2 ) .  
Let f~ e ~(M~), f2 ~ ~(M2) and define f =f~ @f2: fl--> C by 

f f,(~o) if w c a 1  

f ( w )  = / ~" "[f2(w) if O) e ~'~2 
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For X = XI(~X 2 we have R ( X )  = R(X1)  (d R(X2).  Let x ~ R ( X )  and sup- 
pose x ~ R(XO. Then flx-l(x)=fl[X71(x). Similarly, if x~  R(X:),  then 
f[X-l(x) = f21X~l(x). Hence, 

[flx,(X) if x~R(X,)  
fx(x) 

= ~ [ f 2 x 2 ( x )  i f  x ~ R(X9 
It follows that 

L(x) 'fx[2 dlzx = L(x,) [flx~]2 dlzx,+ L(x~) [f2xJ2 dlzx2 

= [l f i l l = +  Ilf=ll = 

We conclude that f ~  ~ ( M )  and Ilfl12= It fill=+ Ilfdl ~. Moreover, if f~ 
@(~1,), f2~ ~(M2) and a, b z C satisfy Wal=+lbl== 1, then af~@bf2z ~(s~). 

We now discuss interference and independence. Let X=X~GX2~ 
�9 ~, @ d2 , f= all | bf2,f z ~ (Mi), i = 1, 2, [alZ+ [b[ 2 = 1 and let A = A1 ~5 A2 z 
g ( X , f ) .  It follows that A~ z g(X1 ,f l)  and A2 ~ g(X2,f2). I f x  ~ R(X1), then 

fx(A)(x)=IA fdtzXx=a fa fldlX~x~=aflx,(Aa)(x) 
c~X--I(x) 1(~Xll(x) 

Similarly, if x ~ R(X2), then fx(A)(x) = bf2x2(A2)(x). Hence, 

P •  = JR~x~ Ifx(A)12 a~x 

=[a12 fR(Xl)Iflxl(A1)12 dlzx'+lb[2 fR(X2, [f2x2(A2)[2 dl'tx2 

= ]al2px,,y,(A1) + [bl2Px~.s~(A2) (5.1) 

In particular, (5.1) shows that the distribution of X relative to f is a convex 
combination of the distribution of X1 relative to fl  and X2 relative to f2. 
Let Y =  Y~O Y2~ dl |  It follows from (5.1) that if Xi does not inter- 
fere with Y~ relative to f ,  i = 1, 2, then X does not interfere with Y relative 
to f Let B = B1 w B2 ~ Xx and A 6 E v. Then 

fB ]fx[y-l(a)][2 d~x=lal2 fB, [flx'[YT1(aa)][2 dtzx, 

J ~  If2x~[ Y2'(A2)][ 2 dtxx= (5.2) + Ib? 

while 

nx.y( B ) nx.f[ Y-'(A)]  = [[al2 nxl,f,( B1) + ] bl2 nx~,f~( B2) ] 
x {la[2Px,,f,[Y71(AO]+[b12pxj:[Y~(A2)]} (5.3) 
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I f  Xi is independent of Y,. relative to f ,  i = 1, 2, then (5.2) gives 

f B ]fx[ Y-'(A)][  2 dl~x = [al2px,,f,(B,)Px,,,r,[ Y~-'(A1)] 

+ ]bl2Px2,i~(B2)Pxj2[ Y21 (A2)] (5.4) 

In general, (5.3) and (5.4) do not coincide unless ab = 0. Thus, even in the 
case of  componentwise independence, X and Y are not independent in 
general. 

The next result characterizes amplitude density direct sums. For f e  
A 

~ ( , 5 ~ 1 ( ~  32~2) w e  write fx, = (f[f l i )x, ,  i =  1, 2. 

Theorem 5.1. Let sg=Sgl@ar f ~ ( ~ )  and assume that ~(sr 
~(~r # Q. Then there exist f c @(ar i = 1, 2, a, b e C with ]a]2+ [8[ 2 = 1 

such that f =  afl@bf2 if and only if (1) f , , ,  = 0 a.e. [/*x,] for every X1 e ar 
implies f ( w l )  = 0 for every wl e f l l ,  (2) fx2 = 0 a.e. [/Xx2] for every X2 e .5~/2 
i m p l i e s  f ( r  = 0 for every ~o2 e [12. 

Proof S u p p o s e f e  ~(ar  and f =  afi@bf2,f ~ ~(sg,),  i =  1, 2. Assume 
fx, = 0 a.e. [/Xx,] for every X, e sr Since af,=fla,, we have aft& =fx, = 0 
a.e. [~*x,] for every Xa e ar Since f i e  @(sr we have 

lal = lal I l f lx ,  II = I ldl , , , l l  = 0  

so a = 0 .  Hence, [b I = 1 andf=Of~@bf2. Then, for every Wle f l l ,  we have 
f(wl)=Ofi(wl)=O. Therefore, (1) holds and in a similar way, (2) holds. 
Conversely, suppose f e  ~(sg)  and (1) and (2) hold. Let X=XI@X2e sd. 
Then for xl E R(X~) we have 

fx f dtx~ = fx f dtx~ = fx,(X,) fx(xl) = -'(x,) ;'(xp 

A 

Similarly, fx(x2) =fx~(X2) for every x2 ~ R(X2). Hence, 

l= fRr [fxl2 d"x= f~(xo[fx,[~ dl'~x,+ fR(x2)[fx:12 &*x~ 

Define a -> 0 by 

= 1 - f [],,=[= d~,,,= 
a 2 

./R (x2) 

for a fixed 322 e sr Then for every X1, Y1 ~ ~ we have 

[f• d~x,-= [fr, I dlxr, ='a2 
( x p  ( y~) 



776 Gudder 

Similarly, there exists a b >- 0 such that for every X2, II2 e M2 we have 

fR~X~)lfxJ2dp'x~=fR~r~)lf~'2d~r~ =b~ 

Then a2+ b 2 = 1. If  a = 0,  then fx, = 0 a.e. [~x,] for every X~ ~ M~. Applying 
(1), we have f ( t 0 1 ) =  0 for every 0~1 ~ 1)1. Let f ~  ~(~r be arbitrary and 
define f 2 : f ~ + C  by f2(t02) =f(t02). To show that f2~ ~(~r let X2~ M2. 
Then for xa~ R(X:) we have 

Ix ";x f2x~(X2) = f~ dlzx~- f d l ~  = fx~(x2) 
~t(x~) F~(x2) 

Hence, 

fR [f2xJ 2 dl.tx~ = | dtxx~ = 1 b2= 
(x2) dR(X2) 

Therefore, f2c  N(sr and f =  0flff~f2. Similarly, if b = 0, then f=f100f2 
for some f i e  @(sCi), i =  1,2. Now suppose a, b > 0 .  Define f~: ~ + C  by 
f~(to,)=f(to,)/a and f2: Ft2+C by f2(~o2)=f(to2)/b. To show that f ~  
@(sr let X1 ~ M1. Then for x~ ~ R(XI) we have 

fx  ~' - 1  Ix  1~  f lx ,  = f l  dtzx,----  f dtz)  l =a fX , (X , )  
7'(xO a l l ( x 1 )  

Hence, 

fR~x,) lfl• d~x~ =-~ IR~x,) lfx,12 dtxx,= l 

Similarly, f2~ ~(~/2). Moreover, f =  aflGbf2. �9 

Corollary 5.2. L e t f c  ~(sg1@~r and suppose there exist Xi ~ s~i such 
A 

that fx, # 0 a.e. [tXx,], i = 1, 2. Then there exist f ~ ~(s~i), i = 1, 2, a, b ~ C 
with lal2+lbl 2= 1 such that f =  afl(~bf2. 

Corollary 5.3. L e t f ~  ~(s~10  M2) and suppose there exist Xi e sCi such 
A 

that fx, r 0 a.e. [~x,], i = 1, 2. Then there exist f ~ N(M~), i = 1, 2, such that 

f =flGf2. 
The next result shows that the decomposition f = af10 bf2 is essentially 

unique. 

Lemma 5.4. Let f~, f~ c ~(ar i = 1, 2, and suppose 

af, e bf2= a'A | b'f  

where a, b r 0. Then there exist c, d e C with Icl = Idl = 1 such that f l  = cf~, 
f2 = df': and a ' =  ac, b'= bd. 
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Proof. Since 
Hence, 

Letting c = a'/ a, 
for f~. [] 

afl(m,)=a'f~(O)l) for all wlef~a we have fl=a'f~/a. 

1 = I I f~ l l  = = 

we have f~ = cf~ and a ' =  ac. A similar result holds 

We now give an example of an f ~  @ (~/1 (~ '~/2) which is not of the form 
f=af~@bf2,f~e~(af~), i =  1,2. 

Example 3. Let [1~={~o1,o~2}, Xl(faJl)-.~-Xl(g-o2)=x1, with counting 
measure on the fiber and range. Let f~2 = {w3}, X2(w3)=x2, again with 
counting measure on the fiber and range. Form the catalogs sgl = {X1}, 
a/2 = {X2}. Define f :  f~lO ft2 by f(~o,) = - f ( w 2 )  =f(w3) = 1. Then f e  
N(sgl@sg2). Indeed, fx, = 0  and fx= = 1. Hence, for X = XI| we have 

Y~ [fx(x)l 2 = 1 
x e R ( X )  

Now fx, = 0 for all XI ~ Sgl, yet f(~o) r 0 for all ~o c f~l. By Theorem 5.1, 
fr / = 1 , 2 .  [] 

We now consider sectors in the direct sum sg~@ a12. Since null ampli- 
tudes are identified with the zero amplitude, it follows from the proof  of 
Theorem 5.1 that modulo a null amplitude, f ~  ~(SglOS42) if and only if 
f=flOf2,  where f e ~(~/i) ,  i =  1, 2. Moreover, fx, =fx~ for every Xi ~ •i, 
i = 1, 2. Clearly, f., and f2 are unique. 

Lemma 5.5. If f g~W(S~l@S~2), then f sg  if and only if f~sg~ 
and f2 s g2- 

Proof Suppose fl sgl,f2sg2. For XlC s4~, X2E sq2, and X=X~@X2 
we have 

IR(x)fxgxdlxx= fR(x,)flx, g, lx~ dlzx,+ L(x~)f2x~g2x2 dtxx~ 

and the right side is independent of X~ ~ s41, X2 c a12. Hence, f s  g. Con- 
versely, suppose f s  g and X1, YI c Sgl. Let X2 ~ sg2 and define X = X~ | X2 
and Y = I110 X2 in a /10  sg2. Then 

= / fl Vlgl "g'l dtzv, 
JR (V~) 
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Hence  f l  s gl and  similar ly f2 s g2. �9 

For  Ai _ ~(sg i ) ,  i = 1, 2, we use the no ta t ion  

ALGA2 = {fl(~f2: fl  ~ Aa , f l  C A2} 

Theorem 5.6. M c  ~(~1 esg2) is a sector  if  and  only if M = M 1 0  M2 
where  Mi 6 J / (s~i) ,  i = 1, 2. 

Proof Suppose  M c ~//(sg~(~ ~2)  and  let 

M,={f: f~M}c__~(sr  i = 1 , 2  

Then  M c M I G  M2 and by  L e m m a  5.5, M~ ~ M~, i = 1, 2. Suppose  gl C M~. 
I f  g2 ~ M2, let g = gl G g2. Then  by  L e m m a  5.5, g ~ M s = M. Hence ,  gl c M1. 
Therefore ,  M~ = M~,  so M~ ~ ~ (Sq l )  and  similar ly M2 ~ eg(~2) .  Finally,  if  
& ~ M~, i = 1, 2, then 

g=gl@g2~MS= M 

Hence ,  M=M~OM2.  Converse ly ,  let M ~ ( ~ / i ) ,  i = 1 , 2 ,  and  let M =  
M I ( ~ M  2. By L e m m a  5.5, Me_ M s. Let g ~ M s, with g = g10g2. Again  by  
L e m m a  5.5, g,- ~ M~ = M~, i = 1, 2. Hence ,  g ~ M. Therefore ,  M = M s, so 
M e ~ ( ~ 1 |  �9 

^ 
For  inner  p roduc t  spaces  H1,/-/2,  let H 1 G  1-12 be the usual  inner  p roduc t  

space direct  sum. That  is, 

HI(~H2 = {(01, ~/2): I1/1E Hi ,  1]/2 E n2} 

where addi t ion  and scalar  mul t ip l ica t ion  are defined componen twi se  and 

( (~ , ,  4,~), (4,1, ,b~)} = (4~,, ,b,} + (4,~, 6~) 

Lemma 5.7. I f  M ~ e ~ ( ~ ) ,  i = 1 , 2 ,  then the m a p  J:M~OM2~ m 
M10M2 given by  J(fl@f2) = ( f l , f2 )  is an i somorph i sm.  

Proof. Clearly,  J is a l inear  bijection. Moreover ,  for  X = X~ O X1 s sr @ 
~2 and f/ ,  & e Mi,  i = 1, 2, we have 

(f~| gl(~g2) = f ( f l (~f2)x(gl@g2)x dl.,x 
JR (x) 

= I R  flXlglxld[d~Xlnt-IR f2x2gax 2 dlzx= 
(X,) (X~) 

=((fl ,f2),  (gl, g2))=(J(f ,@f2),  J(gl@g2)) �9 
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6. CARTESIAN PRODUCTS 

If  A and B are sets, we denote their Cartesian product  A x B by AB. 
We denote an element (a, b) e AB by ab. For measurements X e ~ ( ~ )  and 
Y e ~/(~ ' )  we define the Cartesian product X Y  of X and Y as the map 

XY: ~ '  ~ R(X)R(Y)  

given by XY(wto') = X(to) Y(o)'). For xy e R(XY)  = R(X)R(  Y), the fiber 
(XY)-~(xy) = X-~(x)Y-~(y) is the base space of the measure space 

x x x y (X- ' (x)  Y-'(y), Ex x E y,/Xx x/x r)  

Moreover, the range R(XY)  is the base space of the measure space 

(R(X)R(  Y), Ex x E r ,  l~x x l~v) 

Equipped with these measure structures, X Y  becomes a measurement on 
~12'. It is straightforward to extend this definition to form the Cartesian 
product  of  a ny  finite number of measurements. 

Let ~___ s / (~) ,  ~ _  s~(~') be catalogs. We then define the catalog 
sgN _ ~(f~l'~') by 

sd~ = {XY: X e sq, Y e ~} 

For f e  ~(s~) ,  g e  Y((N), we define fg: f~fl'-~ C by fg(row')=f(w)g(w'), 
where the right side is the usual complex product. If X Y e  sdN, we have 

(fg)xy(xY)= f(xv)_k~y)fg d ~ v =  fx~,(x)f d ~  fy_l(y) g d ~  

=fx(x)gy(y) 

Hence, 

L xy I(fg)xy(xY)12 d xY = If 12 lf t2 duY 

It follows that fg e Y ( ( ~ )  and ]]fgl[ = [If I[ Ilgl]. In particular, i f f e  ~(~/ ) ,  
g e ~ ( ~ ) ,  then fg e Y((~l~). 

If C e ~(XY, fg),  then 

(fg)xr( C)(xy) = [ fg dl.6xyXy 
Jc r~(Xy)-l(xy) 

In general, this expression cannot be simplified unless C is a product event 
C =AB, Ae  ~(X,f) .  Be ~(Y,g). In this case 

(fg)xy(AB)(xY)= fAc~X_,(x)f dl'z~x fB~y_,(y g dlz)Y 

=fx(A)(x)fr(B)(y) (6.1) 
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Applying (6.1) then gives 

Pxy, fg(AB) = Px, y(A)Pr, g(B) (6.2) 

Suppose X, X ' � 9  M, Y, Y ' � 9  ~, X does not interfere with X '  relative to f, 
Y does not interfere with Y' relative to g, and AB �9 g (X 'Y ' ) .  Then from 
(6.2) we have 

Pxr, fg[(X' Y')- '(AB)] = Pxr, fg[(X')-'(A)( Y') - ' (B) ]  

= Px, f(A)Pw,g(B) 

= Px,r,,fg(AB) 

However, every C �9 g (X 'Y ' )  need not be a product  event C = AB and in 
general we may have 

Pxy, fg[ (X'Y ' ) (  C) ] # Px,y,,f~( C) 

so X Y  can interfere with X '  Y' relative to fg. A similar observation holds 
for independence. 

If  f � 9  ~g(M1M2) has the form f = f i f 2 ,  f~ ~ ~(Mi),  i =  1, 2, we call f a 
product amplitude. For f, g �9 ~ (M) ,  we write f •  i f f s  g and (f, g) = 0. 

Theorem 6.1. Let f, g �9 ~(MIM2) be product  amplitudes. Then f s g  if 
and only if one of the following conditions holds: (a) f~ s g~ and f~ s g2, (b) 

f~.Lgl, (c) f2lg2. 

Proof. It is clear that f s  g if and only if 

(flX1, g~x)(f2x2, g2x2) = (fl Y1, g~ r,)(fi r2, g2 r2) (6.3) 

for every X1, Y~ �9 MI, X2, Y2 �9 M2. If  (a), (b), or (c) holds, then (6.3) holds, 
so f sg .  Conversely, suppose f sg .  I f f l Z g l  and fiZg2, then there exists an 
X~ �9 sr such that (fix~, &x,) # O. Letting Y1 = X~ and applying (6.3) gives 
f2 S g2. Similarly, f l  s gl- Now suppose fl  ~'gl- Then there exist X1, Y1 �9 S~l 
such that 

(fix,, glx,) Y~ (fir,, g~ YI ) 

Letting 322 = Y2 and applying (6.3) gives (f2x~, g2x~)= 0. Since 322 �9 M2 is 
arbitrary, f2• Similarly, f2 ~g2 implies fi-l-gl. �9 

For M~ �9 ~(sr i = 1, 2, we define 

mlm2 = {flf2 : f / � 9  mi, i = 1, 2} 

It follows from Theorem 6.1 that M~M2 is a subset of a sector of  ~(M1M2). 
In general, M1M2 is not itself a sector. Denoting the tensor product of M1 
and M2 by M~| it is clear that the map K :M~M2--> M~| defined 
by K (tiff) =fi | extends to a unique isomorphism from span MIM2 into 
M1 | M2. 
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Our next result characterizes product  amplitudes�9 For f ~  ~ ( ~ 1 M 2 ) ,  

tol ~ ~21, to2~ f~2, define fo,2(tol) = f ( t o l ,  ~ and f~,l(to2) = f ( w l ,  tOE). 

Theorem 6.2. Let f ~  Yg(M1M2). Then f is a product  amplitude if and 
only i f f ~  ~ Y((~/1), fo~l ~ ~(M2) for every tO1 c I~l, tO2 ~ I~2 and for every to1, 
t o ~  f~l, to2, tO~e [12 we have 

f(tOltO2)f(tO~tO'2) =f(tOltO~)f(tO~tO2) 

Proof. Suppose f is a product  amplitude and f = f l f 2 .  Then fo~ = 
f2(tO2)fl and fo,~ =fl(tOl)f2 are amplitudes and 

f ( tOltO2) f ( tO ~ tO'2) = f l ( tOx) f2( tO2) f l( tO~) f2( tOt2) 

=f(tO,tO~)/(tO~tO2) 

Conversely, suppose f satisfies the conditions of the theorem. I f f  = 0, then 
clearly f is a product amplitude. Otherwise, there exist tO~r tO~el~2 
such that f(tO~tO'2) ~ O�9 Then for every Wl ~ f ~ ,  to2 e {12 we have 

f(toltO~)f(tO~w2) 1 
f(tolto2) f(tO~tO~) -- f (to ~ to ~) fo,~(to 1) fo~ ~ (to2) [] 

Although we shall not pursue this matter here, it is interesting to observe 
that q, uantum field theory can be formulated within this framework. If  
M _ M(f~) is a catalog, we write M" = MaC. �9 �9 ar where there are n factors 
on the right side. Let llo = {tOo} be a singleton set and define the measurement 
Xo:O ~ {Xo} by X(tOo)= Xo with counting measure on the fiber and range. 
We define M ~ = {Xo}. The l o c k  catalog over M is defined by 

I f f ~  Yg(M), we define the exponential (or coherent) amplitude e x p ( f )  by 

exp(f )  = 1 . . . . . .  
�9 ~ 

where f "  = f f .  �9 f (n factors). It is easy to see that f s  g if and only if 
e x p ( f )  s exp(g). It follows that if M e  ~ ( sg ) ,  then 

exp(M)  = {exp(f) :  f ~  M} 

is contained in a sector of F(M). We leave the further development of  this 
theory to future work. 
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